

Available online at www.sciencedirect.com

JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 57 (2007) 967-975

www.elsevier.com/locate/jgp

Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space

Henrique Fernandes de Lima*,1

Departamento de Matemática e Estatística, Universidade Federal de Campina Grande, 58109-970, Campina Grande - Paraíba, Brazil

Received 9 March 2006; accepted 25 July 2006 Available online 18 September 2006

Abstract

In this paper we develop Minkowski-type formulae for compact spacelike immersed hypersurfaces with boundary and having some constant higher order mean curvature in de Sitter space \mathbb{S}_1^{n+1} . We apply them to establish a relation between the mean curvature and the geometry of the boundary, when it is a geodesic sphere contained into a horizontal hyperplane of the *steady state* space $\mathcal{H}^{n+1} \subset \mathbb{S}_1^{n+1}$.

© 2006 Elsevier B.V. All rights reserved.

JGP SC: Differential geometry; General relativity

MSC: primary 53C42; secondary 53B30; 53C50

Keywords: De Sitter space; Steady state space; Spacelike hypersurfaces; Higher order mean curvature; Minkowski-type formulae

1. Introduction

The interest in the study of spacelike hypersurfaces immersed in spacetimes is motivated by their nice Bernsteintype properties. As for the case of de Sitter space, Goddard [5] conjectured that every complete spacelike hypersurface with constant mean curvature H in de Sitter space \mathbb{S}_1^{n+1} should be totally umbilical. Although the conjecture turned out to be false in its original statement, it motivated a great deal of work of several authors trying to find a positive answer to the conjecture under appropriate additional hypotheses. For instance, in [1] Akutagawa showed that Goddard's conjecture is true when $0 \le H^2 \le 1$ in the case n = 2, and when $0 \le H^2 < 4(n-1)/n^2$ in the case $n \ge 3$. Later, Montiel [8] solved Goddard's problem in the compact case proving that the only closed spacelike hypersurfaces in \mathbb{S}_1^{n+1} with constant mean curvature are the totally umbilical hypersurfaces.

In this paper, following the ideas of Alías and Malacarne [3], we develop Minkowski-type formulae for compact spacelike hypersurfaces M^n with boundary ∂M and with constant higher order mean curvature immersed in de Sitter

0393-0440/\$ - see front matter 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2006.07.005

^{*} Tel.: +55 085 40089889; fax: +55 085 40089889.

E-mail address: henrique@dme.ufcg.edu.br.

¹ Current address: Departamento de Matemática, Universidade Federal do Ceará, 60455-760, Fortaleza - Ceará, Brazil.

space \mathbb{S}_1^{n+1} (see Proposition 1). Afterwards, considering the half \mathcal{H}^{n+1} of the de Sitter space which models the so-called *steady state space*, we use these formulae to obtain our main result (Theorem 1).

For that, let *a* be a non-zero null vector in the past half of the null cone in the Lorentz–Minkowski space \mathbb{L}^{n+2} , which determines the foliation of \mathcal{H}^{n+1} by the horizontal hyperplanes $L^n(\tau) = \{x \in S_1^{n+1}; \langle x, a \rangle = \tau\}, \tau \in [0, +\infty[$, and let $b \in \mathbb{L}^{n+2}$ be any fixed vector such that $\langle a, b \rangle \neq 0$. We prove the result below.

Theorem 1. Let $x : M^n \to \mathcal{H}^{n+1} \subset \mathbb{S}_1^{n+1}$ be a spacelike immersion of a compact hypersurface bounded by an (n-1)-dimensional embedded submanifold $\Sigma = x(\partial M)$, and assume that Σ is contained in a horizontal hyperplane $L^n(\tau)$, for a certain $\tau > 0$. Let $Y_{a,b}$ be the Killing field $\frac{1}{\langle a,b \rangle}(\langle b, .\rangle a - \langle a, .\rangle b)$ on \mathbb{S}_1^{n+1} . If the r-mean curvature H_r is constant for some $r, 1 \leq r \leq n$, then

$$\oint_{\partial M} \langle T_{r-1}\nu, Y_{a,b} \rangle \,\mathrm{d}S = -r \binom{n}{r} H_r \operatorname{vol}(\Omega),$$

where $T_{r-1} : \mathcal{X}(M) \to \mathcal{X}(M)$ is the (r-1)-Newton transformation associated with the second fundamental form of x, and Ω is the domain in $L^n(\tau)$ bounded by Σ .

Observe that the left hand side in the above formula represents the (r - 1)-flux of the Killing field $Y_{a,b}$ on the hypersurface M, and thus Theorem 1 states that this flux does not depend on M, but only on the value of H_r and ∂M .

As an application of this result, and using an estimate of Montiel [9], we establish the following relation between the mean curvature and the geometry of the boundary.

Theorem 2. Let $x : M^n \to \mathcal{H}^{n+1} \subset \mathbb{S}^{n+1}_1$ be a spacelike immersion of a compact hypersurface M^n with non-empty boundary ∂M in the steady state space. Suppose that M^n has constant mean curvature H > 1 with respect to the past-directed unit normal N and that $\partial M = S^{n-1}(b, \rho)$ is the (n-1)-dimensional geodesic sphere with center b and radius ρ into a horizontal hyperplane $L^n(\tau)$, for a certain $\tau > 0$. Then

$$\rho H - \left| 1 - \frac{\rho^2}{2} \right| \sqrt{H^2 - 1} \le 1.$$

As a consequence of this last result, we conclude that

There exists no compact spacelike hypersurface in the steady state space \mathcal{H}^{n+1} with constant mean curvature H > 1 and spherical boundary contained in some horizontal hyperplane with radius $\sqrt{5} - 1 \le \rho \le 2$.

From a physical point of view, the motivation for working with the spacetime \mathcal{H}^{n+1} is that, in the steady state model of the universe, matter is supposed to move along geodesics normal to the hypersurfaces $L^n(\tau)$. Then, they represent constant time slices and, since all of them are isometric to a Euclidean space \mathbb{R}^n , in this cosmological setting the geometry of the spatial sections remains unchanged (cf. [6]).

2. Preliminaries

Let \mathbb{L}^{n+2} denote the (n + 2)-dimensional Lorentz–Minkowski space $(n \ge 2)$, that is, the real vector space \mathbb{R}^{n+2} endowed with the Lorentz metric defined by

$$\langle v, w \rangle = \sum_{i=1}^{n+1} v_i w_i - v_{n+2} w_{n+2},$$

for all $v, w \in \mathbb{R}^{n+2}$. We define the (n + 1)-dimensional de Sitter space \mathbb{S}_1^{n+1} as the following hyperquadric of \mathbb{L}^{n+2} :

$$\mathbb{S}_1^{n+1} = \{ p \in L^{n+2}; \langle p, p \rangle = 1 \}.$$

The induced metric from \langle, \rangle makes \mathbb{S}_1^{n+1} into a Lorentz manifold with constant sectional curvature one. Moreover, if $p \in \mathbb{S}_1^{n+1}$, we can put

$$T_p(\mathbb{S}^{n+1}_1) = \{ v \in \mathbb{L}^{n+2}; \langle v, p \rangle = 0 \}$$

A smooth immersion $x : M^n \to \mathbb{S}_1^{n+1} \hookrightarrow \mathbb{L}^{n+2}$ of an *n*-dimensional connected manifold M^n is said to be a spacelike hypersurface if the induced metric via x is a Riemannian metric on M^n , which, as usual, is also denoted by \langle, \rangle .

Observe that $e_{n+2} = (0, ..., 0, 1)$ is a unit timelike vector field globally defined on \mathbb{L}^{n+2} , which determines a time-orientation on \mathbb{L}^{n+2} . Thus we can choose a unique timelike unit normal field N on M^n which is past-directed on \mathbb{L}^{n+2} (i.e., $\langle N, e_{n+2} \rangle > 0$), and hence we may assume that M^n is oriented by N.

Let $x : M^n \to \mathbb{S}_1^{n+1} \hookrightarrow \mathbb{L}^{n+2}$ be an immersed spacelike hypersurface in de Sitter \mathbb{S}_1^{n+1} , and let N be its past-directed timelike normal field. In order to set up the notation, we will denote by ∇° , $\overline{\nabla}$ and ∇ the Levi-Civita connections of \mathbb{L}^{n+2} , \mathbb{S}_1^{n+1} and M^n , respectively. Then the Gauss and Weingarten formulae for M^n in $\mathbb{S}_1^{n+1} \hookrightarrow \mathbb{L}^{n+2}$ are given respectively by

$$\nabla_V^{\circ} W = \nabla_V W - \langle V, W \rangle x$$

= $\nabla_V W - \langle AV, W \rangle N - \langle V, W \rangle x$

and

$$A(V) = -\nabla_V^\circ N = -\overline{\nabla}_V N,$$

for all tangent vector fields $V, W \in \mathcal{X}(M)$, where A stands for the shape operator of M^n in \mathbb{S}_1^{n+1} associated with N.

Associated with the shape operator of *M* there are *n* algebraic invariants, which are the elementary symmetric functions σ_r of its principal curvatures $\kappa_1, \ldots, \kappa_n$, given by

$$\sigma_r(\kappa_1,\ldots,\kappa_n)=\sum_{i_1<\cdots< i_r}\kappa_{i_1}\cdots\kappa_{i_r},\quad 1\leq r\leq n.$$

The *r*-mean curvature H_r of the spacelike hypersurface *M* is then defined by

$$\binom{n}{r}H_r = (-1)^r \sigma_r(\kappa_1, \ldots, \kappa_n) = \sigma_r(-\kappa_1, \ldots, -\kappa_n).$$

In particular, when r = 1,

$$H_1 = -\frac{1}{n} \sum_{i=1}^n \kappa_i = -\frac{1}{n} \operatorname{tr}(A) = H$$

is the mean curvature of M, which is the main extrinsic curvature of the hypersurface. The choice of the sign $(-1)^r$ in our definition of H_r is motivated by the fact that in that case the mean curvature vector is given by $\vec{H} = HN$. Therefore, H(p) > 0 at a point $p \in M$ if and only if $\vec{H}(p)$ is in the same time-orientation as N(p).

Finally, we recall that a tangent vector field $Y \in \mathcal{X}(\mathbb{S}_1^{n+1})$ is said to be conformal if the Lie derivative of the Lorentzian metric \langle, \rangle with respect to Y satisfies

$$f_Y\langle,\rangle = 2\phi\langle,\rangle,$$

for a certain smooth function $\phi \in C^{\infty}(\mathbb{S}_{1}^{n+1})$. In other words,

$$\langle \overline{\nabla}_V Y, W \rangle + \langle V, \overline{\nabla}_W Y \rangle = 2\phi \langle V, W \rangle,$$

for all tangent vector fields $V, W \in \mathcal{X}(\mathbb{S}_1^{n+1})$. When $\phi \equiv 0, Y$ is said to be a Killing vector field.

Example 1. Given any fixed vectors *a* and *b* of the Lorentz–Minkowski space \mathbb{L}^{n+2} and a non-zero constant $k \in \mathbb{R}$, we consider the vector field

$$Y = k(\langle b, . \rangle a - \langle a, . \rangle b).$$

Observe that $\langle Y, x \rangle = 0$, that is, geometrically Y(x) determines an orthogonal direction to the position vector x on the subspace spanned by a and b. Moreover, we easily verify that

$$\langle \overline{\nabla}_V Y, W \rangle + \langle V, \overline{\nabla}_W Y \rangle = 0$$

for all tangent vector fields $V, W \in \mathcal{X}(\mathbb{S}_1^{n+1})$. Therefore, Y is a Killing vector field globally defined on de Sitter space.

3. The Newton transformations

In this section, we will introduce the corresponding Newton transformations

 $T_r: \mathcal{X}(M) \to \mathcal{X}(M), \quad 0 \le r \le n,$

which arise from the shape operator A. These Newton transformations will be used in the next section to derive our Minkowski-type formulae in de Sitter space. According to our definition of the r-mean curvatures, the Newton transformations are given by

$$T_r = \binom{n}{r} H_r I + \binom{n}{r-1} H_{r-1} A + \dots + \binom{n}{1} H_1 A^{r-1} + A^r,$$

where I denotes the identity in $\mathcal{X}(M)$, or, inductively,

$$T_0 = I$$
 and $T_r = \binom{n}{r} H_r I + A T_{r-1}$.

Observe that the characteristic polynomial of A can be written in terms of the H_r as

$$\det \left(tI - A \right) = \sum_{r=0}^{n} \binom{n}{r} H_r t^{n-r}$$

where $H_0 = 1$. By the Cayley–Hamilton theorem, this implies that $T_n = 0$.

Besides, we have the following properties of T_r (cf. [2]).

(1) If $\{E_1, \ldots, E_n\}$ is a local orthonormal frame on M which diagonalizes A, i.e., $AE_i = \kappa_i E_i$, $i = 1, \ldots, n$, then it also diagonalizes each T_r , and $T_r E_i = \lambda_{i,r} E_i$ with

$$\lambda_{i,r} = (-1)^r \sum_{i_1 < \cdots < i_r, i_j \neq i} \kappa_{i_1} \cdots \kappa_{i_r} = \sum_{i_1 < \cdots < i_r, i_j \neq i} (-\kappa_{i_1}) \cdots (-\kappa_{i_r}).$$

(2) For each $1 \le r \le n - 1$,

$$\operatorname{tr}(T_r) = (r+1) \binom{n}{r+1} H_r$$

and

$$\operatorname{tr}(AT_r) = -(r+1) \binom{n}{r+1} H_{r+1}.$$

(3) For every $V \in \mathcal{X}(M)$ and for each $1 \le r \le n-1$,

$$\operatorname{tr}\left(T_{r}\nabla_{V}A\right) = -\binom{n}{r+1}\left\langle\nabla H_{r+1}, V\right\rangle$$

(4) Since \mathbb{S}_1^{n+1} has constant sectional curvature, the Newton transformations T_r are divergence free, that is,

$$\operatorname{div}_M(T_r) = \operatorname{tr}\left(V \to (\nabla_V T_r)V\right) = 0.$$

4. Minkowski-type formulae in de Sitter space

In what follows, $x : M^n \to \mathbb{S}_1^{n+1} \hookrightarrow \mathbb{L}^{n+2}$ will be an immersed compact spacelike hypersurface with boundary ∂M and we will consider M^n oriented by a unit past-directed timelike normal vector field N. Furthermore, $v \in T_p M$ *is* the outward pointing unit conormal vector along ∂M , dM stands for the *n*-dimensional volume element of M with respect to the induced metric and the chosen orientation, and dS is the induced (n-1)-dimensional area element on ∂M .

For fixed vectors *a* and *b* of the Lorentz–Minkowski space \mathbb{L}^{n+2} such that $\langle a, b \rangle \neq 0$ we will consider the particular Killing vector field $Y_{a,b} \in \mathcal{X}(\mathbb{S}^{n+1}_1)$ defined by (see Example 1)

$$Y_{a,b} = \frac{1}{\langle a,b\rangle} (\langle b,.\rangle a - \langle a,.\rangle b).$$

(i) $\oint_{\partial M} \langle T_{r-1}v, Y_{a,b} \rangle dS = \binom{n-1}{r-1} H_r \frac{1}{\langle a,b \rangle} \oint_{\partial M} \det(x, v_1, \dots, v_{n-1}, a, b) dS$, where $\{v_1, \dots, v_{n-1}\}$ is a unit frame tangent to ∂M .

Proof. (i) Denoting by $Y^T \in \mathcal{X}(M)$ the tangential component of Y and using that $\nabla_V T_r$ is self-adjoint for any $V \in \mathcal{X}(M)$ and that T_r are divergence free, we have

$$\operatorname{div}_{M}(T_{r}Y^{T}) = \langle \operatorname{div}_{M}(T_{r}), Y \rangle + \sum_{i=1}^{n} \langle \nabla_{E_{i}}Y^{T}, T_{r}E_{i} \rangle$$
$$= \sum_{i=1}^{n} \langle \nabla_{E_{i}}Y^{T}, T_{r}E_{i} \rangle,$$

where $\{E_1, \ldots, E_n\}$ is a local orthonormal frame on M^n . Since Y is a Killing vector field, by taking the covariant derivative of $Y = Y^T - \langle Y, N \rangle N$ and using the Gauss and Weingarten formulae, we obtain that

$$\frac{1}{2}(\langle \nabla_V Y^T, W \rangle + \langle V, \nabla_W Y^T \rangle) = -\langle Y, N \rangle \langle AV, W \rangle$$

for tangent vector fields $V, W \in \mathcal{X}(M)$. Let us choose $\{E_1, \ldots, E_n\}$ a local orthonormal frame on M diagonalizing A. Then we have

$$\langle \nabla_{E_i} Y^T, T_r E_i \rangle = \lambda_{i,r} \langle \nabla_{E_i} Y^T, E_i \rangle = \langle E_i, \nabla_{T_r E_i} Y^T \rangle.$$

Consequently,

$$\langle \nabla_{E_i} Y^T, T_r E_i \rangle = -\langle Y, N \rangle \langle A T_r E_i, E_i \rangle.$$

Therefore we obtain

$$\operatorname{div}_{M}(T_{r}Y^{T}) = -\langle Y, N \rangle \operatorname{tr} (AT_{r})$$
$$= (r+1) \binom{n}{r+1} \langle Y, N \rangle H_{r+1}$$

Finally, using the divergence theorem, we conclude that

$$\oint_{\partial M} \langle T_{r-1}\nu, Y \rangle \, \mathrm{d}S = \int_M \operatorname{div}_M (T_{r-1}Y^T) \, \mathrm{d}M$$
$$= r \binom{n}{r} \int_M H_r \langle Y, N \rangle \, \mathrm{d}M.$$

(ii) Let $\theta_{a,b}(v_1, \ldots, v_{n-1}) = \det(x, v_1, \ldots, v_{n-1}, a, b)$, which is an (n-1)-form defined in M^n . From the Gauss and Weingarten formulae, we have

$$(\nabla_{Z}\theta_{a,b})(X_{1},...,X_{n-1}) = Z(\theta_{a,b}(X_{1},...,X_{n-1})) - \sum_{i=1}^{n-1} \theta_{a,b}(X_{1},...,\nabla_{Z}X_{i},...,X_{n-1})$$

= det (Z, X₁,...,X_{n-1}, a, b)
$$-\sum_{i=1}^{n-1} \langle AX_{i}, Z \rangle \det(x,...,N_{i},...,a,b),$$

for all tangent vector fields $Z, X_1, \ldots, X_{n-1} \in \mathcal{X}(M)$. Thus,

$$d\theta_{a,b}(X_1,\ldots,X_n) = \sum_{i=1}^n (-1)^i (\nabla_{X_i}\theta_{a,b})(X_1,\ldots,\stackrel{\wedge}{X_i},\ldots,X_n)$$

$$= \sum_{i=1}^{n} (-1)^{i} \det (X_{i}, \dots, \hat{X}_{i}, \dots, a, b)$$

$$- \sum_{i=1}^{n} (-1)^{i} \sum_{\substack{j=1\\j\neq i}}^{n-1} \langle AX_{j}, X_{i} \rangle \det (x, \dots, \hat{X}_{i}, \dots, \hat{X}_{j}, N, \dots, a, b)$$

$$= -n \det (X_{1}, \dots, X_{n}, a, b),$$

where $\{X_1, \ldots, X_n\}$ is a local orthonormal frame on M^n that diagonalizes the shape operator A. Then, using the Gauss formula for the vectors a and b, we conclude that

$$\mathrm{d}\theta_{a,b} = n(\langle a, N \rangle \langle b, x \rangle - \langle a, x \rangle \langle b, N \rangle) \,\mathrm{d}M.$$

Therefore, from item (i) applied to the Killing vector field $Y_{a,b}$, and using the Stokes theorem, our result follows.

Remark 1. Alías and Malacarne [3] obtained the integral formulae of the item (i) of Proposition 1 in the Lorentz–Minkowski space, while Alías, Brasil and Colares [2] obtained them in a conformally stationary spacetime, and considering the compact spacelike hypersurface M^n without boundary. The item (ii) of Proposition 1 reproduces in de Sitter space (and in a more general form) the flux formula of Alías and Pastor [4], which was used by López [7] to obtain an estimate for the height of compact spacelike surfaces with constant mean curvature in the three-dimensional Lorentz–Minkowski space \mathbb{L}^3 .

5. The steady state space \mathcal{H}^{n+1}

Let $a \in \mathbb{L}^{n+2}$ be a non-zero null vector in the past half of the null cone (with vertex in the origin), that is, $\langle a, a \rangle = 0$ and $\langle a, e_{n+2} \rangle > 0$, where $e_{n+2} = (0, ..., 0, 1)$. Then the open region of the de Sitter space \mathbb{S}_1^{n+1} given by

 $\mathcal{H}^{n+1} = \{ x \in \mathbb{S}_1^{n+1}; \langle x, a \rangle > 0 \}$

is the so-called steady state space (cf. [9]).

Observe that \mathcal{H}^{n+1} is extendable and, so, non-complete, being only half a de Sitter space. Its boundary, as a subset of \mathbb{S}_1^{n+1} , is the null hypersurface

$$\{x \in \mathbb{S}^{n+1}_1; \langle x, a \rangle = 0\},\$$

whose topology is that of $\mathbb{R} \times \mathbb{S}^{n-1}$ (cf. also [6], p. 126).

Now, we shall consider in \mathcal{H}^{n+1} the timelike field

$$\mathcal{K} = a - \langle x, a \rangle x.$$

We easily see that

$$\overline{\nabla}_V \mathcal{K} = -\langle x, a \rangle V$$
, for all $V \in \mathcal{X}(\mathcal{H}^{n+1})$,

that is, \mathcal{K} is a closed and conformal field on \mathcal{H}^{n+1} . Then (cf. [10], Proposition 1), we have that the *n*-dimensional distribution \mathcal{D} defined on \mathcal{H}^{n+1} by

$$p \in \mathcal{H}^{n+1} \longmapsto \mathcal{D}(p) = \{v \in T_p \mathcal{H}^{n+1}; \langle \mathcal{K}(p), v \rangle = 0\}$$

determines a codimension one spacelike foliation $\mathcal{F}(\mathcal{K})$ which is oriented by \mathcal{K} . Moreover (cf. [8], Example 1), the leaves of $\mathcal{F}(\mathcal{K})$ are horizontal hyperplanes

$$L^{n}(\tau) = \{ x \in S_{1}^{n+1}; \langle x, a \rangle = \tau \}, \quad \tau \in]0, +\infty[,$$

which are totally umbilical hypersurfaces of \mathcal{H}^{n+1} isometric to the Euclidean space \mathbb{R}^n , and having constant mean curvature one with respect to the unit past-directed normal fields

$$N_{\tau}(x) = \frac{1}{\tau}a - x, \quad x \in L^{n}(\tau).$$

Finally, we note that the hypersurfaces $L^n(\tau)$ approach the boundary of \mathcal{H}^{n+1} when τ tends to zero and that when τ tends to $+\infty$ they approach the spacelike future infinity for timelike and null lines of de Sitter space.

We note that Theorem 1 reproduces in the steady state space \mathcal{H}^{n+1} a corresponding integral formula in the Lorentz-Minkowski space obtained by Alías and Malacarne (cf. [3], Theorem 3). As usual, if Σ is an (n-1)-dimensional closed submanifold in $L^n(\tau) \hookrightarrow \mathcal{H}^{n+1}$, a spacelike hypersurface $x : M^n \to \mathcal{H}^{n+1}$ is said to be a hypersurface with boundary Σ if the restriction of the immersion x to the boundary ∂M is a diffeomorphism onto Σ . In this case, we identify $\partial M = \Sigma$. We now proceed to prove our main result.

Proof of Theorem 1. We first note that, for an adequate choice of the orientations on M and on Ω , we have that $M \cup \Omega$ is an *n*-cycle of \mathcal{H}^{n+1} . Thus, since \mathcal{H}^{n+1} is simply connected, from the Alexander duality theorem, we have that $M \cup \Omega = \partial D$, where D is a compact oriented domain immersed in $\mathcal{H}^{n+1} \subset \mathbb{S}_1^{n+1}$ (more precisely, we may choose the orientations of M and Ω in such a way that both of them must be outward pointing vectors in relation to ∂D). On the other hand, since $Y_{a,b}$ is a Killing vector field in de Sitter space,

$$\langle \overline{\nabla}_V Y_{a,b}, V \rangle = 0, \text{ for all } V \in \mathcal{X}(\mathbb{S}^{n+1}_1),$$

from which it follows that

$$\operatorname{div}_{S_1^{n+1}}(Y_{a,b}) = 0$$

In particular, this is true on \mathcal{H}^{n+1} . Thus, from the divergence theorem, we have

$$\int_{\partial D} \langle Y_{a,b}, \widetilde{\nu} \rangle \, \mathrm{d}S = \int_D \operatorname{div}_{S_1^{n+1}}(Y_{a,b}) = 0,$$

where $\tilde{\nu} \in T_x D$ denotes the outward pointing unit conormal vector along ∂D and dS is the induced *n*-dimensional area element of ∂D . Then, since N and N_{τ} are in the same half of the null cone, we obtain that

$$\int_{M} \langle Y_{a,b}, N \rangle \, \mathrm{d}M - \int_{\Omega} \langle Y_{a,b}, N_{\tau} \rangle \, \mathrm{d}\Omega = 0.$$

Consequently,

$$\begin{split} \int_{M} \langle Y_{a,b}, N \rangle \, \mathrm{d}M &= \int_{\Omega} \langle Y_{a,b}, N_{\tau} \rangle \, \mathrm{d}\Omega \\ &= \int_{\Omega} \frac{1}{\langle a, b \rangle} (\langle b, x \rangle \langle a, N_{\tau} \rangle - \langle a, x \rangle \langle b, N_{\tau} \rangle) \, \mathrm{d}\Omega \\ &= \int_{\Omega} \frac{1}{\langle a, b \rangle} (-\tau \langle b, x \rangle - \tau (\frac{1}{\tau} \langle a, b \rangle - \langle b, x \rangle)) \, \mathrm{d}\Omega \\ &= -\mathrm{vol}(\Omega). \end{split}$$

Therefore, from item (i) of Proposition 1, we have

$$\oint_{\partial M} \langle T_{r-1}\nu, Y_{a,b} \rangle \, \mathrm{d}S = r \binom{n}{r} H_r \int_M \langle Y_{a,b}, N \rangle \, \mathrm{d}M$$
$$= -r \binom{n}{r} H_r \operatorname{vol}(\Omega). \quad \Box$$

Observe that in the context of Lorentzian warped products, setting $\tau = \exp(t)$, we can consider \mathcal{H}^{n+1} as $-\mathbb{R} \times_{\exp(t)} \mathbb{R}^n$, which corresponds to the model for the *steady state* of the universe proposed by Bondi, Gold and Hoyle (cf. [6], p. 126). In this model, since \mathcal{K} is past-directed, we have that

$$\mathcal{K}(t, p) = -\exp(t)\left(\frac{\partial}{\partial t}\right)_{(t,p)}.$$

As a consequence of Theorem 1, considering the warped product model $-\mathbb{R} \times_{\exp(t)} \mathbb{R}^n$ for \mathcal{H}^{n+1} , we have the following results.

Corollary 1. Let $x : M^n \to \mathcal{H}^{n+1}$ be a spacelike immersion of a compact hypersurface bounded by an (n-1)dimensional embedded submanifold $\Sigma = x(\partial M)$, and assume that Σ is contained in a horizontal hyperplane $L^n(\tau)$, for a certain $\tau > 0$. Suppose that the r-mean curvature H_r is constant for some $r, 1 \le r \le n$, and that $b \in L^n(\tau)$. Then

$$\oint_{\partial M} \langle T_{r-1}\nu, Y_{a,b} \rangle \,\mathrm{d}S = -r \binom{n}{r} H_r \exp(nt) \operatorname{vol}(\varphi_t(\Omega)),$$

where $t = \ln(\tau)$, φ is the flow of \mathcal{K} and Ω is the domain in $L^n(\tau)$ bounded by Σ .

Corollary 2. Let $x : M^n \to \mathcal{H}^{n+1}$ be a spacelike immersion of a compact hypersurface bounded by an (n-1)dimensional embedded submanifold $\Sigma = x(\partial M)$, and assume that Σ is contained in a horizontal hyperplane $L^n(\tau)$, for a certain $\tau > 0$. Suppose that the r-mean curvature H_r is constant for some $r, 1 \le r \le n$, and that $b \in L^n(\tau)$. Then

$$\oint_{\partial M} \langle T_{r-1}\nu, Y_{a,b} \rangle \, \mathrm{d}S = \frac{r}{(n+1)} \binom{n}{r} H_r \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{vol}(\varphi_t(\Omega)) \bigg|_{t=0},$$

where φ is the flow of \mathcal{K} and Ω is the domain in $L^n(\tau)$ bounded by Σ .

Proof. For each $t \in \mathbb{R}$, let D_t be the domain of φ_t . Then, Ω is contained in D_t and

$$\operatorname{vol}(\varphi_t(\Omega)) = \int_{\varphi_t(\Omega)} \mathrm{d}\Omega_t = \int_{\Omega} \varphi_t^*(\mathrm{d}\Omega_t),$$

where $d\Omega_t$ stands for the *n*-dimensional volume element of $\varphi_t(\Omega)$ with respect to the induced metric.

Because the integrand is a smooth function of t, we can differentiate this expression with respect to t by differentiating under the integral sign. Thus, we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{vol}(\varphi_t(\Omega)) \bigg|_{t=t_0} = \int_{\Omega} \frac{\partial}{\partial t} (\varphi_t^*(\mathrm{d}\Omega_t)) \bigg|_{t=t_0} = \int_{\Omega} \varphi_{t_0}^*(\pounds_{\mathcal{K}} \,\mathrm{d}\Omega_{t_0})$$
$$= \int_{\Omega} \varphi_{t_0}^*(\mathrm{div}\mathcal{K} \,\mathrm{d}\Omega_{t_0}) = \int_{\varphi_{t_0}(\Omega)} \mathrm{div}\mathcal{K} \,\mathrm{d}\Omega_{t_0}$$
$$= -(n+1) \exp(t_0) \mathrm{vol}(\varphi_{t_0}(\Omega)).$$

Consequently, taking $t_0 = 0$, we have

$$\operatorname{vol}(\Omega) = \operatorname{vol}(\varphi_0(\Omega)) = -\frac{1}{(n+1)} \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{vol}(\varphi_t(\Omega)) \Big|_{t=0}$$

which, from Theorem 1, finishes the proof. \Box

6. Proof of Theorem 2

It is straightforward to check that

$$\partial M = S^{n-1}(b, \rho) = \{ x \in L^n(\tau); \langle x - b, x - b \rangle = \rho^2 \}.$$

Or, equivalently,

$$\partial M = S^{n-1}(b,\rho) = \left\{ x \in L^n(\tau); \langle x, b \rangle = 1 - \frac{\rho^2}{2} \right\},\,$$

where \langle,\rangle denotes the induced metric via the inclusion $L^n(\tau) \hookrightarrow \mathcal{H}^{n+1}$. Thus, from Theorem 1 it follows that

$$nH \operatorname{vol}(B^{n}(\rho)) \leq \oint_{\partial M} |\langle \nu, Y_{a,b} \rangle| \, \mathrm{d}S$$

=
$$\oint_{\partial M} \left| \frac{1}{\langle a, b \rangle} (\langle b, x \rangle \langle a, \nu \rangle - \langle a, x \rangle \langle b, \nu \rangle) \right| \, \mathrm{d}S$$

$$= \oint_{\partial M} \left| \frac{1}{\tau} \left(1 - \frac{\rho^2}{2} \right) \langle a, \nu \rangle - \langle b, \nu \rangle \right| dS$$

$$\leq \left(\frac{1}{\tau} \left| 1 - \frac{\rho^2}{2} \right| \sup_{\partial M} |\langle a, \nu \rangle| + 1 \right) \operatorname{area}(S^{n-1}(\rho))$$

$$= \left(\frac{1}{\tau} \left| 1 - \frac{\rho^2}{2} \right| \sup_{\partial M} |\langle a, \nu \rangle| + 1 \right) \frac{n \operatorname{vol}(B^n(\rho))}{\rho}.$$

On the other hand, since $\langle a, a \rangle = 0$ and $\langle a, v \rangle = 0$ for all $v \in T_x(L^n(\tau))$, we have that

$$\langle a, \nu \rangle^2 = \langle a, N \rangle^2 - \langle a, x \rangle^2.$$

Consequently,

$$\rho H \leq \frac{1}{\tau} \left| 1 - \frac{\rho^2}{2} \right| \sqrt{\sup_{\partial M} \langle a, N \rangle^2 - \tau^2} + 1.$$

Finally, since we are supposing that H > 1, we can use the estimate (cf. [9], Theorem 7)

$$-\tau H \le \langle a, N \rangle < 0,$$

to conclude that

$$\rho H - \left| 1 - \frac{\rho^2}{2} \right| \sqrt{H^2 - 1} \le 1. \quad \Box$$

Corollary 3. Let $x : M^n \to \mathcal{H}^{n+1}$ be a spacelike immersion of a compact hypersurface M^n with constant mean curvature H whose boundary ∂M is a geodesic sphere of radius $\sqrt{2}$ into a horizontal hyperplane. Then

$$|H| \le \frac{\sqrt{2}}{2}.$$

Acknowledgements

I wish to thank my advisor Antonio Gervasio Colares for his guidance, and the referee for giving some valuable suggestions. This work was partially supported by CAPES, Brazil.

References

- [1] K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987) 13–19.
- [2] L.J. Alías, A. Brasil Jr., A.G. Colares, Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. 46 (2003) 465–488.
- [3] L.J. Alías, J.M. Malacarne, Spacelike hypersurfaces with constant higher order mean curvature in Minkowski space-time, J. Geom. Phys. 41 (2002) 359–375.
- [4] L.J. Alías, J.A. Pastor, Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz–Minkowski space, J. Geom. Phys. 28 (1998) 85–93.
- [5] A.J. Goddard, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977) 489–495.
- [6] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Spacetime, Cambridge Univ. Press, Cambridge, 1973.
- [7] R. López, Area Monotonicity for spacelike surfaces with constant mean curvature, J. Geom. Phys. 52 (2004) 353-363.
- [8] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988) 909–917.
- [9] S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces, J. Math. Soc. Japan 55 (2003) 915–938.
- [10] S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math. Ann. 314 (1999) 529-553.