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Abstract

In this paper we develop Minkowski-type formulae for compact spacelike immersed hypersurfaces with boundary and having
some constant higher order mean curvature in de Sitter space Sn+1

1 . We apply them to establish a relation between the mean
curvature and the geometry of the boundary, when it is a geodesic sphere contained into a horizontal hyperplane of the steady state
spaceHn+1

⊂ Sn+1
1 .
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1. Introduction

The interest in the study of spacelike hypersurfaces immersed in spacetimes is motivated by their nice Bernstein-
type properties. As for the case of de Sitter space, Goddard [5] conjectured that every complete spacelike hypersurface
with constant mean curvature H in de Sitter space Sn+1

1 should be totally umbilical. Although the conjecture turned out
to be false in its original statement, it motivated a great deal of work of several authors trying to find a positive answer
to the conjecture under appropriate additional hypotheses. For instance, in [1] Akutagawa showed that Goddard’s
conjecture is true when 0 ≤ H2

≤ 1 in the case n = 2, and when 0 ≤ H2 < 4(n − 1)/n2 in the case n ≥ 3. Later,
Montiel [8] solved Goddard’s problem in the compact case proving that the only closed spacelike hypersurfaces in
Sn+1

1 with constant mean curvature are the totally umbilical hypersurfaces.
In this paper, following the ideas of Alı́as and Malacarne [3], we develop Minkowski-type formulae for compact

spacelike hypersurfaces Mn with boundary ∂ M and with constant higher order mean curvature immersed in de Sitter
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space Sn+1
1 (see Proposition 1). Afterwards, considering the half Hn+1 of the de Sitter space which models the so-

called steady state space, we use these formulae to obtain our main result (Theorem 1).
For that, let a be a non-zero null vector in the past half of the null cone in the Lorentz–Minkowski space Ln+2,

which determines the foliation ofHn+1 by the horizontal hyperplanes Ln(τ ) = {x ∈ Sn+1
1 ; 〈x, a〉 = τ }, τ ∈ ]0, +∞[,

and let b ∈ Ln+2 be any fixed vector such that 〈a, b〉 6= 0. We prove the result below.

Theorem 1. Let x : Mn
→ Hn+1

⊂ Sn+1
1 be a spacelike immersion of a compact hypersurface bounded by an

(n − 1)-dimensional embedded submanifold Σ = x(∂ M), and assume that Σ is contained in a horizontal hyperplane
Ln(τ ), for a certain τ > 0. Let Ya,b be the Killing field 1

〈a,b〉
(〈b, .〉a − 〈a, .〉b) on Sn+1

1 . If the r-mean curvature Hr is
constant for some r, 1 ≤ r ≤ n, then∮

∂ M
〈Tr−1ν, Ya,b〉 dS = −r

(n

r

)
Hr vol(Ω),

where Tr−1 : X (M) → X (M) is the (r − 1)-Newton transformation associated with the second fundamental form of
x, and Ω is the domain in Ln(τ ) bounded by Σ .

Observe that the left hand side in the above formula represents the (r − 1)-flux of the Killing field Ya,b on the
hypersurface M , and thus Theorem 1 states that this flux does not depend on M , but only on the value of Hr and ∂ M .

As an application of this result, and using an estimate of Montiel [9], we establish the following relation between
the mean curvature and the geometry of the boundary.

Theorem 2. Let x : Mn
→ Hn+1

⊂ Sn+1
1 be a spacelike immersion of a compact hypersurface Mn with non-empty

boundary ∂ M in the steady state space. Suppose that Mn has constant mean curvature H > 1 with respect to the
past-directed unit normal N and that ∂ M = Sn−1(b, ρ) is the (n − 1)-dimensional geodesic sphere with center b and
radius ρ into a horizontal hyperplane Ln(τ ), for a certain τ > 0. Then

ρH −

∣∣∣∣1 −
ρ2

2

∣∣∣∣ √H2 − 1 ≤ 1.

As a consequence of this last result, we conclude that

There exists no compact spacelike hypersurface in the steady state space Hn+1 with constant mean curvature
H > 1 and spherical boundary contained in some horizontal hyperplane with radius

√
5 − 1 ≤ ρ ≤ 2.

From a physical point of view, the motivation for working with the spacetimeHn+1 is that, in the steady state model
of the universe, matter is supposed to move along geodesics normal to the hypersurfaces Ln(τ ). Then, they represent
constant time slices and, since all of them are isometric to a Euclidean space Rn , in this cosmological setting the
geometry of the spatial sections remains unchanged (cf. [6]).

2. Preliminaries

Let Ln+2 denote the (n + 2)-dimensional Lorentz–Minkowski space (n ≥ 2), that is, the real vector space Rn+2

endowed with the Lorentz metric defined by

〈v, w〉 =

n+1∑
i=1

viwi − vn+2wn+2,

for all v, w ∈ Rn+2. We define the (n + 1)-dimensional de Sitter space Sn+1
1 as the following hyperquadric of Ln+2:

Sn+1
1 = {p ∈ Ln+2

; 〈p, p〉 = 1}.

The induced metric from 〈, 〉 makes Sn+1
1 into a Lorentz manifold with constant sectional curvature one. Moreover,

if p ∈ Sn+1
1 , we can put

Tp(Sn+1
1 ) = {v ∈ Ln+2

; 〈v, p〉 = 0}.
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A smooth immersion x : Mn
→ Sn+1

1 ↪→ Ln+2 of an n-dimensional connected manifold Mn is said to be a
spacelike hypersurface if the induced metric via x is a Riemannian metric on Mn , which, as usual, is also denoted
by 〈, 〉.

Observe that en+2 = (0, . . . , 0, 1) is a unit timelike vector field globally defined on Ln+2, which determines a
time-orientation on Ln+2. Thus we can choose a unique timelike unit normal field N on Mn which is past-directed on
Ln+2 (i.e., 〈N , en+2〉 > 0), and hence we may assume that Mn is oriented by N .

Let x : Mn
→ Sn+1

1 ↪→ Ln+2 be an immersed spacelike hypersurface in de Sitter Sn+1
1 , and let N be its

past-directed timelike normal field. In order to set up the notation, we will denote by ∇
◦, ∇ and ∇ the Levi-Civita

connections of Ln+2, Sn+1
1 and Mn , respectively. Then the Gauss and Weingarten formulae for Mn in Sn+1

1 ↪→ Ln+2

are given respectively by

∇
◦

V W = ∇V W − 〈V, W 〉x

= ∇V W − 〈AV, W 〉N − 〈V, W 〉x

and

A(V ) = −∇
◦

V N = −∇V N ,

for all tangent vector fields V, W ∈ X (M), where A stands for the shape operator of Mn in Sn+1
1 associated with N .

Associated with the shape operator of M there are n algebraic invariants, which are the elementary symmetric
functions σr of its principal curvatures κ1, . . . , κn , given by

σr (κ1, . . . , κn) =

∑
i1<···<ir

κi1 · · · κir , 1 ≤ r ≤ n.

The r -mean curvature Hr of the spacelike hypersurface M is then defined by(n

r

)
Hr = (−1)rσr (κ1, . . . , κn) = σr (−κ1, . . . ,−κn).

In particular, when r = 1,

H1 = −
1
n

n∑
i=1

κi = −
1
n

tr (A) = H

is the mean curvature of M , which is the main extrinsic curvature of the hypersurface. The choice of the sign (−1)r

in our definition of Hr is motivated by the fact that in that case the mean curvature vector is given by
−→
H = H N .

Therefore, H(p) > 0 at a point p ∈ M if and only if
−→
H (p) is in the same time-orientation as N (p).

Finally, we recall that a tangent vector field Y ∈ X (Sn+1
1 ) is said to be conformal if the Lie derivative of the

Lorentzian metric 〈, 〉 with respect to Y satisfies

£Y 〈, 〉 = 2φ〈, 〉,

for a certain smooth function φ ∈ C∞(Sn+1
1 ). In other words,

〈∇V Y, W 〉 + 〈V, ∇W Y 〉 = 2φ〈V, W 〉,

for all tangent vector fields V, W ∈ X (Sn+1
1 ). When φ ≡ 0, Y is said to be a Killing vector field.

Example 1. Given any fixed vectors a and b of the Lorentz–Minkowski space Ln+2 and a non-zero constant k ∈ R,
we consider the vector field

Y = k(〈b, .〉a − 〈a, .〉b).

Observe that 〈Y, x〉 = 0, that is, geometrically Y (x) determines an orthogonal direction to the position vector x on the
subspace spanned by a and b. Moreover, we easily verify that

〈∇V Y, W 〉 + 〈V, ∇W Y 〉 = 0,

for all tangent vector fields V, W ∈ X (Sn+1
1 ). Therefore, Y is a Killing vector field globally defined on de Sitter space.
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3. The Newton transformations

In this section, we will introduce the corresponding Newton transformations

Tr : X (M) → X (M), 0 ≤ r ≤ n,

which arise from the shape operator A. These Newton transformations will be used in the next section to derive
our Minkowski-type formulae in de Sitter space. According to our definition of the r -mean curvatures, the Newton
transformations are given by

Tr =

(n

r

)
Hr I +

(
n

r − 1

)
Hr−1 A + · · · +

(n

1

)
H1 Ar−1

+ Ar ,

where I denotes the identity in X (M), or, inductively,

T0 = I and Tr =

(n

r

)
Hr I + ATr−1.

Observe that the characteristic polynomial of A can be written in terms of the Hr as

det (t I − A) =

n∑
r=0

(n

r

)
Hr tn−r ,

where H0 = 1. By the Cayley–Hamilton theorem, this implies that Tn = 0.
Besides, we have the following properties of Tr (cf. [2]).

(1) If {E1, . . . , En} is a local orthonormal frame on M which diagonalizes A, i.e., AEi = κi Ei , i = 1, . . . , n, then it
also diagonalizes each Tr , and Tr Ei = λi,r Ei with

λi,r = (−1)r
∑

i1<···<ir ,i j 6=i

κi1 · · · κir =

∑
i1<···<ir ,i j 6=i

(−κi1) · · · (−κir ).

(2) For each 1 ≤ r ≤ n − 1,

tr (Tr ) = (r + 1)

(
n

r + 1

)
Hr

and

tr (ATr ) = −(r + 1)

(
n

r + 1

)
Hr+1.

(3) For every V ∈ X (M) and for each 1 ≤ r ≤ n − 1,

tr (Tr∇V A) = −

(
n

r + 1

)
〈∇ Hr+1, V 〉.

(4) Since Sn+1
1 has constant sectional curvature, the Newton transformations Tr are divergence free, that is,

divM (Tr ) = tr (V → (∇V Tr )V ) = 0.

4. Minkowski-type formulae in de Sitter space

In what follows, x : Mn
→ Sn+1

1 ↪→ Ln+2 will be an immersed compact spacelike hypersurface with boundary
∂ M and we will consider Mn oriented by a unit past-directed timelike normal vector field N . Furthermore, ν ∈ Tp M
is the outward pointing unit conormal vector along ∂ M , dM stands for the n-dimensional volume element of M with
respect to the induced metric and the chosen orientation, and dS is the induced (n − 1)-dimensional area element on
∂ M .

For fixed vectors a and b of the Lorentz–Minkowski space Ln+2 such that 〈a, b〉 6= 0 we will consider the particular
Killing vector field Ya,b ∈ X (Sn+1

1 ) defined by (see Example 1)

Ya,b =
1

〈a, b〉
(〈b, .〉a − 〈a, .〉b).
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Proposition 1 (Minkowski-Type Formulae). Let x : Mn
→ Sn+1

1 ↪→ Ln+2 be a spacelike immersion of a compact
hypersurface with boundary ∂ M and let Y be a Killing field in Sn+1

1 . If the r-mean curvature Hr of Mn is constant
for some r, 1 ≤ r ≤ n, then
(i)

∮
∂ M 〈Tr−1ν, Y 〉 dS = r

( n
r

)
Hr

∫
M 〈Y, N 〉 dM;

(ii)
∮

∂ M 〈Tr−1ν, Ya,b〉 dS =

(
n−1
r−1

)
Hr

1
〈a,b〉

∮
∂ M det (x, v1, . . . , vn−1, a, b) dS,

where {v1, . . . , vn−1} is a unit frame tangent to ∂ M.

Proof. (i) Denoting by Y T
∈ X (M) the tangential component of Y and using that ∇V Tr is self-adjoint for any

V ∈ X (M) and that Tr are divergence free, we have

divM (Tr Y T ) = 〈divM (Tr ), Y 〉 +

n∑
i=1

〈∇Ei Y
T , Tr Ei 〉

=

n∑
i=1

〈∇Ei Y
T , Tr Ei 〉,

where {E1, . . . , En} is a local orthonormal frame on Mn . Since Y is a Killing vector field, by taking the covariant
derivative of Y = Y T

− 〈Y, N 〉N and using the Gauss and Weingarten formulae, we obtain that

1
2
(〈∇V Y T , W 〉 + 〈V, ∇W Y T

〉) = −〈Y, N 〉〈AV, W 〉,

for tangent vector fields V, W ∈ X (M). Let us choose {E1, . . . , En} a local orthonormal frame on M diagonalizing
A. Then we have

〈∇Ei Y
T , Tr Ei 〉 = λi,r 〈∇Ei Y

T , Ei 〉 = 〈Ei , ∇Tr Ei Y
T
〉.

Consequently,

〈∇Ei Y
T , Tr Ei 〉 = −〈Y, N 〉〈ATr Ei , Ei 〉.

Therefore we obtain

divM (Tr Y T ) = −〈Y, N 〉tr (ATr )

= (r + 1)

(
n

r + 1

)
〈Y, N 〉Hr+1.

Finally, using the divergence theorem, we conclude that∮
∂ M

〈Tr−1ν, Y 〉 dS =

∫
M

divM (Tr−1Y T ) dM

= r
(n

r

) ∫
M

Hr 〈Y, N 〉 dM.

(ii) Let θa,b(v1, . . . , vn−1) = det (x, v1, . . . , vn−1, a, b), which is an (n −1)-form defined in Mn . From the Gauss and
Weingarten formulae, we have

(∇Zθa,b)(X1, . . . , Xn−1) = Z(θa,b(X1, . . . , Xn−1)) −

n−1∑
i=1

θa,b(X1, . . . ,∇Z X i , . . . , Xn−1)

= det (Z , X1, . . . , Xn−1, a, b)

−

n−1∑
i=1

〈AX i , Z〉 det (x, . . . , N
i
, . . . , a, b),

for all tangent vector fields Z , X1, . . . , Xn−1 ∈ X (M). Thus,

dθa,b(X1, . . . , Xn) =

n∑
i=1

(−1)i (∇X i θa,b)(X1, . . . ,
∧

X i , . . . , Xn)
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=

n∑
i=1

(−1)i det (X i , . . . ,
∧

X i , . . . , a, b)

−

n∑
i=1

(−1)i
n−1∑
j=1
j 6=i

〈AX j , X i 〉 det (x, . . . ,
∧

X i , . . . ,
∧

X j , N
j
, . . . , a, b)

= −n det (X1, . . . , Xn, a, b),

where {X1, . . . , Xn} is a local orthonormal frame on Mn that diagonalizes the shape operator A. Then, using the
Gauss formula for the vectors a and b, we conclude that

dθa,b = n(〈a, N 〉〈b, x〉 − 〈a, x〉〈b, N 〉) dM.

Therefore, from item (i) applied to the Killing vector field Ya,b, and using the Stokes theorem, our result follows. �

Remark 1. Alı́as and Malacarne [3] obtained the integral formulae of the item (i) of Proposition 1 in the
Lorentz–Minkowski space, while Alı́as, Brasil and Colares [2] obtained them in a conformally stationary spacetime,
and considering the compact spacelike hypersurface Mn without boundary. The item (ii) of Proposition 1 reproduces
in de Sitter space (and in a more general form) the flux formula of Alı́as and Pastor [4], which was used by López [7] to
obtain an estimate for the height of compact spacelike surfaces with constant mean curvature in the three-dimensional
Lorentz–Minkowski space L3.

5. The steady state space Hn+1

Let a ∈ Ln+2 be a non-zero null vector in the past half of the null cone (with vertex in the origin), that is, 〈a, a〉 = 0
and 〈a, en+2〉 > 0, where en+2 = (0, . . . , 0, 1). Then the open region of the de Sitter space Sn+1

1 given by

Hn+1
= {x ∈ Sn+1

1 ; 〈x, a〉 > 0}

is the so-called steady state space (cf. [9]).
Observe thatHn+1 is extendable and, so, non-complete, being only half a de Sitter space. Its boundary, as a subset

of Sn+1
1 , is the null hypersurface

{x ∈ Sn+1
1 ; 〈x, a〉 = 0},

whose topology is that of R × Sn−1 (cf. also [6], p. 126).
Now, we shall consider inHn+1 the timelike field

K = a − 〈x, a〉x .

We easily see that

∇VK = −〈x, a〉V, for all V ∈ X (Hn+1),

that is, K is a closed and conformal field on Hn+1. Then (cf. [10], Proposition 1), we have that the n-dimensional
distribution D defined onHn+1 by

p ∈ Hn+1
7−→ D(p) = {v ∈ TpHn+1

; 〈K(p), v〉 = 0}

determines a codimension one spacelike foliation F(K) which is oriented by K. Moreover (cf. [8], Example 1), the
leaves of F(K) are horizontal hyperplanes

Ln(τ ) = {x ∈ Sn+1
1 ; 〈x, a〉 = τ }, τ ∈ ]0, +∞[,

which are totally umbilical hypersurfaces of Hn+1 isometric to the Euclidean space Rn , and having constant mean
curvature one with respect to the unit past-directed normal fields

Nτ (x) =
1
τ

a − x, x ∈ Ln(τ ).



H.F. de Lima / Journal of Geometry and Physics 57 (2007) 967–975 973

Finally, we note that the hypersurfaces Ln(τ ) approach the boundary of Hn+1 when τ tends to zero and that when τ

tends to +∞ they approach the spacelike future infinity for timelike and null lines of de Sitter space.
We note that Theorem 1 reproduces in the steady state space Hn+1 a corresponding integral formula in the

Lorentz–Minkowski space obtained by Alı́as and Malacarne (cf. [3], Theorem 3). As usual, if Σ is an (n − 1)-
dimensional closed submanifold in Ln(τ ) ↪→ Hn+1, a spacelike hypersurface x : Mn

→ Hn+1 is said to be a
hypersurface with boundary Σ if the restriction of the immersion x to the boundary ∂ M is a diffeomorphism onto Σ .
In this case, we identify ∂ M = Σ . We now proceed to prove our main result.

Proof of Theorem 1. We first note that, for an adequate choice of the orientations on M and on Ω , we have that
M ∪ Ω is an n-cycle of Hn+1. Thus, since Hn+1 is simply connected, from the Alexander duality theorem, we have
that M ∪Ω = ∂ D, where D is a compact oriented domain immersed inHn+1

⊂ Sn+1
1 (more precisely, we may choose

the orientations of M and Ω in such a way that both of them must be outward pointing vectors in relation to ∂ D).
On the other hand, since Ya,b is a Killing vector field in de Sitter space,

〈∇V Ya,b, V 〉 = 0, for all V ∈ X (Sn+1
1 ),

from which it follows that

divSn+1
1

(Ya,b) = 0.

In particular, this is true onHn+1. Thus, from the divergence theorem, we have∫
∂ D

〈Ya,b, ν̃〉 dS =

∫
D

divSn+1
1

(Ya,b) = 0,

where ν̃ ∈ Tx D denotes the outward pointing unit conormal vector along ∂ D and dS is the induced n-dimensional
area element of ∂ D. Then, since N and Nτ are in the same half of the null cone, we obtain that∫

M
〈Ya,b, N 〉 dM −

∫
Ω

〈Ya,b, Nτ 〉 dΩ = 0.

Consequently,∫
M

〈Ya,b, N 〉 dM =

∫
Ω

〈Ya,b, Nτ 〉 dΩ

=

∫
Ω

1
〈a, b〉

(〈b, x〉〈a, Nτ 〉 − 〈a, x〉〈b, Nτ 〉) dΩ

=

∫
Ω

1
〈a, b〉

(−τ 〈b, x〉 − τ(
1
τ

〈a, b〉 − 〈b, x〉)) dΩ

= −vol(Ω).

Therefore, from item (i) of Proposition 1, we have∮
∂ M

〈Tr−1ν, Ya,b〉 dS = r
(n

r

)
Hr

∫
M

〈Ya,b, N 〉 dM

= −r
(n

r

)
Hr vol(Ω). �

Observe that in the context of Lorentzian warped products, setting τ = exp(t), we can consider Hn+1 as
−R ×exp(t) Rn , which corresponds to the model for the steady state of the universe proposed by Bondi, Gold and
Hoyle (cf. [6], p. 126). In this model, since K is past-directed, we have that

K(t, p) = − exp(t)

(
∂

∂t

)
(t,p)

.

As a consequence of Theorem 1, considering the warped product model −R ×exp(t) Rn for Hn+1, we have the
following results.
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Corollary 1. Let x : Mn
→ Hn+1 be a spacelike immersion of a compact hypersurface bounded by an (n − 1)-

dimensional embedded submanifold Σ = x(∂ M), and assume that Σ is contained in a horizontal hyperplane Ln(τ ),
for a certain τ > 0. Suppose that the r-mean curvature Hr is constant for some r, 1 ≤ r ≤ n, and that b ∈ Ln(τ ).
Then ∮

∂ M
〈Tr−1ν, Ya,b〉 dS = −r

(n

r

)
Hr exp(nt) vol(ϕt (Ω)),

where t = ln(τ ), ϕ is the flow of K and Ω is the domain in Ln(τ ) bounded by Σ .

Corollary 2. Let x : Mn
→ Hn+1 be a spacelike immersion of a compact hypersurface bounded by an (n − 1)-

dimensional embedded submanifold Σ = x(∂ M), and assume that Σ is contained in a horizontal hyperplane Ln(τ ),
for a certain τ > 0. Suppose that the r-mean curvature Hr is constant for some r, 1 ≤ r ≤ n, and that b ∈ Ln(τ ).
Then ∮

∂ M
〈Tr−1ν, Ya,b〉 dS =

r

(n + 1)

(n

r

)
Hr

d
dt

vol(ϕt (Ω))

∣∣∣∣
t=0

,

where ϕ is the flow of K and Ω is the domain in Ln(τ ) bounded by Σ .

Proof. For each t ∈ R, let Dt be the domain of ϕt . Then, Ω is contained in Dt and

vol(ϕt (Ω)) =

∫
ϕt (Ω)

dΩt =

∫
Ω

ϕ∗
t (dΩt ),

where dΩt stands for the n-dimensional volume element of ϕt (Ω) with respect to the induced metric.
Because the integrand is a smooth function of t , we can differentiate this expression with respect to t by

differentiating under the integral sign. Thus, we obtain

d
dt

vol(ϕt (Ω))

∣∣∣∣
t=t0

=

∫
Ω

∂

∂t
(ϕ∗

t (dΩt ))

∣∣∣∣
t=t0

=

∫
Ω

ϕ∗
t0(£K dΩt0)

=

∫
Ω

ϕ∗
t0(divK dΩt0) =

∫
ϕt0 (Ω)

divK dΩt0

= −(n + 1) exp(t0)vol(ϕt0(Ω)).

Consequently, taking t0 = 0, we have

vol(Ω) = vol(ϕ0(Ω)) = −
1

(n + 1)

d
dt

vol(ϕt (Ω))

∣∣∣∣
t=0

,

which, from Theorem 1, finishes the proof. �

6. Proof of Theorem 2

It is straightforward to check that

∂ M = Sn−1(b, ρ) = {x ∈ Ln(τ ); 〈x − b, x − b〉 = ρ2
}.

Or, equivalently,

∂ M = Sn−1(b, ρ) =

{
x ∈ Ln(τ ); 〈x, b〉 = 1 −

ρ2

2

}
,

where 〈, 〉 denotes the induced metric via the inclusion Ln(τ ) ↪→ Hn+1. Thus, from Theorem 1 it follows that

nHvol(Bn(ρ)) ≤

∮
∂ M

|〈ν, Ya,b〉| dS

=

∮
∂ M

∣∣∣∣ 1
〈a, b〉

(〈b, x〉〈a, ν〉 − 〈a, x〉〈b, ν〉)

∣∣∣∣ dS
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=

∮
∂ M

∣∣∣∣ 1
τ

(
1 −

ρ2

2

)
〈a, ν〉 − 〈b, ν〉

∣∣∣∣ dS

≤

(
1
τ

∣∣∣∣1 −
ρ2

2

∣∣∣∣ sup
∂ M

|〈a, ν〉| + 1
)

area(Sn−1(ρ))

=

(
1
τ

∣∣∣∣1 −
ρ2

2

∣∣∣∣ sup
∂ M

|〈a, ν〉| + 1
)

n vol(Bn(ρ))

ρ
.

On the other hand, since 〈a, a〉 = 0 and 〈a, v〉 = 0 for all v ∈ Tx (Ln(τ )), we have that

〈a, ν〉
2

= 〈a, N 〉
2
− 〈a, x〉

2.

Consequently,

ρH ≤
1
τ

∣∣∣∣1 −
ρ2

2

∣∣∣∣ √sup
∂ M

〈a, N 〉2 − τ 2 + 1.

Finally, since we are supposing that H > 1, we can use the estimate (cf. [9], Theorem 7)

−τ H ≤ 〈a, N 〉 < 0,

to conclude that

ρH −

∣∣∣∣1 −
ρ2

2

∣∣∣∣ √H2 − 1 ≤ 1. �

Corollary 3. Let x : Mn
→ Hn+1 be a spacelike immersion of a compact hypersurface Mn with constant mean

curvature H whose boundary ∂ M is a geodesic sphere of radius
√

2 into a horizontal hyperplane. Then

|H | ≤

√
2

2
.
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